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The theory of continucus dislocations deals with a continuous medium having & continuous
distribution of defects in microstructure, namely dislocations. Below, we construct a class
of models of continuous media, which comprise many known models as well as other models,
including viscous, elastic and plastic effects and the motion of dislocation defects.

In particular, a variational principle, the internal energy and a dissipation function are
utilized in the construction of models of plastic bodies.

In describing the distribution of dislocations in terms of a number of defining parame-
ters(*), it is necessary to include some additional new characteristics. In view of the fact
that these additional characteristics may be chosen in various ways, different theories
arise. We will begin with a brief review.

In the works of Kondo, Bilby, Kr3ner, Sedov, Kunin and others [1 to 8) the continuum is
supplied with a manifold of affine connection #, and the dislocation characteristics are
given by the metric tensor, and the curvature and torsion tensors of the manifold. The mani-
fold M may be introduced by various reasoning processes. Bilby [3 to 5] constructs the man-
ifold M on the basis of lattice theory, and obtains, as a result, the curvature tensor equal
to zero (nine new degrees of freedom). Kondo [1 and 2] defines the manifold M as the mani~
fold of initial states which represents a metric manifold of affine connection of the most
general form. The independent parameters are given by the metric tensor g %, 3 and the tor-
sion tensor Saﬁy of the manifold M {a total of 15 new parameters), while the curvature ten~
sor is expressed in terms of their first and secon:! Jerivatives [9 and 10]. Supplementary
equations are necessary for g%, 5 and Sa.ﬁy' In his work, Kréner [6 and 11] proposes a meth-
od of obtaining these equations, given the curvature tensor as a function of the coordinates.
The case for which the curvature tensor vanishes is called the “‘restricted’’ theory. In that
case, we have absolute parallelism, i.e. the basic assumptions of Bilby's theory are fulfil-
led. By linearizing the equations of the ‘‘restricted’’ theory, we obtain the equations of the
so called.elementary theory [11}.

If the torsion tensor vanishes, then the manifold # is Riemannian, and may be imbedded
in a Euclidean space E of a greater number of dimensions. By allowing the geometric char-
acteristics of the manifold M vary with time, we obtain displacements of M in E. The com-
ponents of the displacement vector of M in £ may be taken as the defining parameters. Cor-
responding equations for reversible phenomena are cbtained in [2] (see Vol. 3) by means of
a variational principle,

In[12 and 13], the defining parameters are introduced without involving any concepts

*) The behavior of a medium is considered known if a system of quantities called the de-
fining parameters are known functions of the coordinates and of time.
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from differential geometry; the dynamic equations are constructed by averaging the equa-
tions are constructed by averaging the equations of motion for discrete dislocations (12,
Although the analysis confined itself to linear theory, the results obtained were in the form
of extremely complex integrodifferential equations which were diificult to relate to the the-

ory of plasticity.

Below, we will show that in order to describe the distribution of dislocations, including
known plastic models, it is sufficient to introduce nine new (compared to classical elas-
ticity) degrees of freedom (three more degrees of freedom than for the general case in the
theory of plasticity).

1. Defining parameters, We consider the motion of the medium with respect to
some general curvilinear reference system of an observer with space(*) coordinates x4 time
coordinate ¢t and coordinate basis J,. We also introduce a reference system(**) moving
with the medium with Lagrangian coordinates &M, time coordinate t and coordinate basis
3~u . The motion of the medium is defined by the relation between these two reference
systems [14].

% = g (B8, t)
The base vectors 3", and Q" are obtained from 3, and DP by an affine transfor-
mation (at each point)
(+
P ox . ~ 6&*"
9 v :xmvam T = v ! I = gp-ﬁaﬁ, Ep' """"“—8; 3“\» = gAvp.3Ap‘
ok 8x
A
g v = BapZ® By
Here, g ':’IJ- and g, are the covariant components of the metric tensor in the moving ref-

erence system and the observer system, respectively.
Consider two (isomorphic) groups of coordinate transformations

2t yh(a®), B () (1.1)
where y/g are the new space coordinates of the observer system while ¥ are the new Lag-

rangian coordinates.
Thus,

<4
D, —Dp02°/y%, D —>DVont/or’
Let A be an invariant of the form
x -
A = A%D,9% = C*', D" D

It is clear that A‘::;L behave like the components of a contravariant vector for coordinate
transformations of the observer reference system (for fixed 1) and like the components of a
covariant vector for transformations of the moving reference system (for fixed @), The com-
ponents C Avp, form a second order tensor for coordinate transformations of the moving ref-

erence system., The quantities 4 “'u and C* v“ represent the same tensor A, and correspond
to two different choices of base vectors. In particular, for the metric tensor G we have the

representations
o A A ANV
G = ga33‘133 = I p3¢3 b= g“‘wf) 5
Below, we consider the derivatives of A with respect to the coordinates, defined by For-
mulas

8 ~
OA na _ BA qap 04 i Al 638 Apn® -1 ik

*)  The space coordinates are associated with Greek indices which range over the values
0{ 1, 2. 3'
**) Quantities referring to the mobing system are denoted by the symbol .
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aAP
= ( - + Foz\'BAYP'” r ApleBkgva) 353”13“ =

ax*

| = Va4, D07 D% = V", 47,39 "D
where Fa_ﬁy and I "#J‘ are the Christoffel symbols for the cases 9, and I, respec-

tively.
39 " 23"y A Ana
-—-—ax; = raa 3-{, 5E_,' =T pv 9 2
It is easily shown that x ap’and £ * are constant with respect to covariant differentia-
tion(*)

Vﬁxixp- =0, VBE»FG =0
The time derivatives of A may be defined in many ways [14]. Hereafter, we will utilize
the individual derivative of the following form{**):

=4

d
DA = -o‘li—t (Aauaag"u) EMD P = const = ( dtp- + FBYQABPUY) 3¢9Ap. (1 -2)

where vY = dx” /dt are the velocity components of the material points. The derivative DA
is calculated for stationary Lagrangian coordinates £ * with “‘stationary’” Lagrangian ba-
sis O"P and taking into account the changes in the base vectors Iy for a moving mater-
ial point.

It is evident that, for a coordinate change, DA%, transforms like A%,

In order to comstruct the proposed continuous dislocation theory, it is sufficient to con~
fine ourselves to the following collection of invariant, defining parameters:

v = "9, G = g,9"9% = 2%,9,9"" = g",,9"*d"
A=A4%3,9" = ¢, D", %3**, DA
S, Lpy= LA(p)vl"'Vkm...unBAvx...vk:')W" (p=1,...N) (1.3)

where S is the entropy, while Ly is the collection of tensors characterizing the physical
and geometric properties of the medium in the initial state (for example, anisotropy). Among
the tensors Ly, we may include the tensor

G° = g°D D"
defining ds, , the distance between particles in the initial state
dse? = g°. dE* dE>
By definition
L™k dt =0
» p’""“'n/

Compared to classical elasticity, the number of defining parameters includes nine new
degrees of freedom, namely the components of A. These may be given the following physi-
cal meaning.

Consider an infinitesimal particle with Lagrangian coordinates £/ remove it from the

*} In [15 and 16] the covariant derivatives of x ";‘ were introduced differently, and were
nonzero.
*#) Here, note [14].

d3, [dt =T g3 v"
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bady and remove the external loads. The particle will then deform, and the base vectors
9", will become the vectors 3u*' A deformation of this type may be described by tensor
A:
D%, = 9", = 449, (1.4)

After deformation, the particle will be in an unstressed state, so that the components
C™Y, of A describe an elastic deformation(*). Moreover, from the basic condition we find
that the components of A depend only on the coordinates £Hand time ¢. In connection with
A, we can introduce the physical parameters:|

tensor of elastic deformation

8.0 =12(8"p — &%), g = gup A" 4%, (1.5)
tensor of plastic deformation
8;\.@) = 1/2 (g*p.v - gop.v) (1 6)

tensor of plastic deformation rates
en (P = de[(P) ] dt =Yy dg*,, | dt = Vagus (A% D A°, 4 A*DA%)
tensor of elastic deformation gradients
\V4 AAB;:\»(E) = —1aV "18%w = —a8us (AQPAVAAAB\* + 4 5V“AA“»L)

Consider a closed contour L within the body. It is clear that

$ar= %, a0

For the elastic deformation described above, each infinitesimal element dr = 73"},;1'5“'
becomes dr *= 9 u'd EM The integral

$ar* = VEMN:

is generally nonzero and equal to a vector by ,, which connects the ends of the broken con-
tour L after elastic deformation{**)

by =571,0" = % der = | 7 A% Ba der b (1.7
L S

By (1.7), each {finite) closed contour L corresponds to a vector by y called the Burgers
vector,

Suppose that at some point £ there is an infinitesimal contour surrounding the area do
with normal B, Corresponding to this, there is an infinitesimal Burgers vector b(n), which
depends on &, n and do. In order to obtain the Burgers vector at the point &M, we pass to
the limit

b
. (n) __ QgAawmk A A A @A A WY X ~ *%
}i;l—l;}Tﬁ“ = 5 n &3 I S =1/28 B flv p,A v (1.8)
In (1.8), &% denotes the components of the alternating tensor, with g™IB = 1/ /g%,
B are the components of the matrix(***) which is the inverse of 4 = |[A%,)|. Thus, the

*) The tensor in (1.4) differs from the one introduced in[6], 4 = A“a3a3“‘ (a=1, 2,
3), by the rule of component transformation, since the vectors 3% form a different ba-
sis which does not correspond to 9*
**) Square brackets around indices denote an alternating operation while parenthesis
around indices indicate symmetrization.
**¥) The positions of the indices of A, are essentially as given. Consider the lowering of
indices of 4%, and BH, with the aid of metric tensors gog and g%, for a and i, res-

pectively. Since .
(Footnote continued on next page)
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components of the Burgers vector b¥_, at a point are defined by the normal  and the ten-
sor §7 @2 (£K 1), which is called the dislocation density tensor. In association with

S @A, we consider the third-order tensor @& which is entisymmetric with respect to the in-
dices pv

. Qr Ana A ~ A A A A
a=358","3""37"9%, S’ = BV 1wl (1.9)
and which is related to S™ “* by the transformations
SAQ,VA = eAp.\m)SAmka Shml = 1/28A"‘““’“‘-S“\;a.vA
The tensor § “;“,7‘ will also be called the dislocation density tensor.
Ifbh,,,b,.,, and b, ,, denote the Burgers vector on the surfaces whose normals are given
By B (3) g
by 3y, 9, and J,, respectively, then the surface whose normal is 0 is given by
b(n) = b(l)nl —[— h(a)n2 + b(g)n3 (1 10)

It follows from (1.8) and (1.10) that the Burgers vector is analogous to the surface load
on do while S® ®X  is analogous to the stress temnsor.
We introduce II = nt*,,9"*3"", given by the relation

d3*,/dt = n*,,3* = DA%,
Whence
:ﬂ:"m B Bp,aDAav

The angular velocity for the affine transformation (1.4), defined by 4% will be called
the plastic whirl. The corresponding antisymmetric tensor will be denoted by 9'—'-'@;,;3“‘“
9 "Y1t is easily seen that

QAp,v zn‘[pv] ('111)

Note that the components of the plastic deformation rate tensor may be expressed in
terms of the components of Il by Formula

e &) =1"un (1.12)

Above, in introducing the dislocation characteristics, no use was made of geometric
terminology. Cormrespondingly, the dynamic theory, below, requires no geometric interpreta-
tion. However, in order to establish relations between this theory and the kinematic theo-
ries which are already known and to gain additional information which may facilitate a com=~
parison between theoretical and experimental results, we will show how one may construct
from A a metric manifold of affine connection for the ‘‘initial’’ state.

Define, in the moving coordinate system, the geometric quantity

dA*

* A A B

I} — B, ( T T4y ) (1.13)
It is easily verified that, in going from one moving coordinate system to another, F*}‘/“,

transforms like the Christoffel symbols and that g*; defined in (1.5) behaves like a con-

stant under covariant differentiation, with regard to ['* v e

. . Ot A A
v p.g v = agz:m— F*y.v g*lm'_ r'um g*yl = 0 (1.14)
The dislocation density tensor S'\;“,;‘ coincides with that part of the Christoffel symbol
which is antisymmetric with respect to uv

(Footnote continued from previous page)
Agp = gaBABw B,= g'po"a
then it follows from (1.5):

Aup_ = BML
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SA&WA = F*[P“]A (1.15)

The manifold of the *‘initial’’ state with the remaining plastic deformations is introduced
as a manifold(*) with Christoffel symbol I'*,, *, metric tensor 8* v and torsion tensor
S"l“,". It follows from (1.14) and (1.15) that 1™, ,,*» may be expressed in terms of the met-
ric and torsion tensors by the formula [9 and lﬂf

A A LY ALhe AL
= N = {w} + 8T8 =8 (1.16)

where

(M) ot g (e | P 00y
wv 2 aE* e Gl

Computation (taking into account (1.5) and (1.13)) shows that the curvature tensor of
manifold M vanishes

Rosl (U*,2, 0T*,,} 08 = 0 (1.17)

TR

Substitution of (1.16) into (1.17) yields the relation between the metric tensor and the
density dislocation tensor. The resultant Eqgs.

og* % 3s
Rasya (g*vm, AN £ v A R p‘f_) =0 (1'18)

aE..p ’ 02‘:,“' aa;‘ ’ wy aam
are called by some authors the fundamental geometric law. Note that, at each (fixed) point,
the components of the metric tensor and the dislocation density tensor are kinematically
inde pendent, since (1.18) contains the derivatives of g*,, and SA#,,;‘ with respect to the
coordinates.
By linearizing (1.18) it is possible to separate

the parts of Raﬂys which depend exclu-
sively [8] on derivatives of 3*,u.v from those of SA‘“,)‘

~ 8 - 3 * A 3 A A
Raay = A azy (azgpv /0Em0§ ) + Na‘%y (aé Y /agm) =0 (119)

The tensor Na.,B'yS is called the incompatibility tensor. A study of (1.19) as fundamental
relations in the static, linear theory of dislocations is given in [6, 8 and 11]. Given the in-
compatibility tensor N z.,8, it is proposed to find the metric tensor g*,, by use of (1.19)
Such a formulation cannot be considered satisfactory, for in a realistically posed problem
the incompatibility tensor itself must be determined in the solution of the problem.

Below, we obtain the dynamic equations for A% with the fundamental geometric law (1.
18) satisfied identically everywhere. The tensors g%, and S"y_.‘,A are obtained from the
known 4%, by Formulas (1.5) and (1.9).

2. Variational principle. The various models will be constructed with the aid
of a variational principle [7 and 15-17)

b
6\\Adrdt+aw+aw*=o (2.1)

Vit

Here A is the Lagrangian, V is an arbitrary region associated with the particles of the
medium, and d T is a volume element

*) In Kréner's restricted theory [11] with 3,!. as a basis for the initial state manifold, the
components of the Christoffel symbols vanish. In the theory developed below, we have
from (1.4)

23" P ry
LY N R . __p* At
s’ or’ (A%u9q) = ( ag’ + Tg,*4P,a7, | 0 = I7,)09%)
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dv= Vg de'di?dE® = Y gdatda®dz®, g =det|g*, ], g =det|gus]

Eq. (2.1) is taken for arbitrary variations of the defininggarameters which are nonzero
on the boundary of the region of integration. The functional O W is the integral over the
boundary of the four-dimensional region in the space of £ ¢, taken with respect to a linear
combination of the variations of the defining parameters, and is to be determined, while SW*
is some given functional(*). The Lagrangian A is a function of the tensor components in
(1.3), has the dimensions of energy density, and is a scalar with respect to the transforma-
tions (1.1), we assume for simplicity that V %, 4%, enter the Lagrangian only through the
components of the dislocation density tensor a, defined in {1.9).

We determine the variations of the arguments of A (1.3} in an arbitrarily chosen but fixed
observer reference system. In (2.1}, by the stated conditions, the quantities varied are the
trajectories of the particles of the medium

8e® =z * (E¥, 1) — x® (E¥, 1)

The independent parameters 4 and the entropy S. For the variation of the components of A,
we set(**)

8A = A'®, D, (&) B* (£) — A%, 3, (=) O (E) = 84", 3, F*

Under coordinate transformation, the BA%_ transform like the 4%,;. For the variation of
derivatives of x®and A, we employ Formulas
§v=1v"" (', )3, (') — ™ (x, 1) B, (2) = [d (827) / dt 4T, *»"8x |3, = (Dbz%) B,
86 =2'%,0,(2") 9" * (£) — 2,9, (2) 3"F (§) =2, V/,0¢%9,0 ¥
8 (DA)=§ (DA“}LBQ3 Ty = (DBA%,) 3,9 "B — D (8A)
o= (88,83 V2", (2.2)
From (1.9), we obtain
88 ) = BNV 8A4%, — 8B,V AP, = B N 84%, 50, B, 547,

From the relation BJ‘IQA'G;_L = 8}}},, it follows that 5B2*g = ~ B%B%SA‘L.

Components of the tensors L(p) are regarded as specified functions of £# and therefore
are not varied.

In the basic Eq. (2.1), besides varying the functions (for constant £#) we also vary time
¢t by displacement over an infinitesimal 8t. For the limited purposes of the present paper
such a time variation is sufficient(***), It is evident that for arbitrary 4, we have

8.A =A'(E, t')—A(E*, £)=8A + DA - 8t

The symbol 8, will be used hereafter to denote total variation, while the symbol & will
denote variation for constant t. In particular, we can write for 51x a

8z =2 (&, t')—a®(E*, 1) = 82* + v*8t

*) The functional W is determined, for known A and S W*, for an arbitrary region Vi. As
a result, we obtain the equilibrium equations, The energy-momentum tensor {in parti-
cular the stress tensor) is determined with the aid of the functional W, and not by
means of equations alone, as is generally done. The functional SW* contains terms
which take into account changes in entropy and addition of heat. This makes it possi~
ble to obtain the proper equations for reversible and irreversible processes. An equa-
tion of the form (1.2) was used by Toupin [ 18] and by Mindlin [19] with a fixed region
¥t occupied by a body and with a given time interval[s m t2} to obtain models of me~
dia with reversible processes only, without taking into account the effects of heat. In
that case, the functional O W is used only for the formulation of boundary conditions.

**) The arbitrariness of the variations permits their determination by various means.
***) In addition, it is assumed that ¢, and ¢, are independent of £ «
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In the following, variation of the integral of A will mean the variation §,. From (2.2) and
(2.3)
dA d - — 4 A
B1A = 8A + 88, bydv=(Vadiz¥)dr, —A Ve =poVe T
Here, by definition, the density of the medium is p = f{£*)/+/g " The variation of the
first term in (2.1), is given by
J A

61SSAdtdt =SS{Xg6w“+ "o 84 + 55 85+ [9 ”gz“(%_vaé??_
Vi

the above equations, we have

84%,
vt
3 A .
— e @ 00v ot Byt v N B .
b4 “o(p4%,) P )+VB(°°‘ i B 1)] 5t}d‘rdt

— \5 (645817 - 6" #aB, B8, 4%,) ng do dt —
x t

« 0 A % a Ah
__g p[ 8w R ey —F-)—]hdr (2.4)

Here, ng are the components of the vector normal to the boundary of the space region V,
namely the surface 2. In (2.4), we have introduced the following notation:

dA 8 A BA aA aA/p
p=—ap, AR = — , Xe=—0pD 6P
o p'axa.p x BSAM;v x p o +VB &

SA A /p ~ aA oA

8.4%, 8 (DA%,) Vv V", A%,y a4% (2.9)

aA/P A A BV A A GVCOA  BRpA A
- D———— v {0 B o} Ay " B
Y 6(DA%_)+V ( IS a)+ 2 v a+8A"‘p.

3. Basic equations. Further, by definition, we set
W = SS {p@as 4 Fobyz® — 1,857 02% —

Vi

— Q¥ By8A%— QT "y (BuadA) + NOt) dvdt =

?

¢ {98645' + (Fa + ;; BTaB) Sa> + ( Q A{J»v‘_§_<7h@}w}.) Bp,abA“q + {FJ)“ + N +
t
+ :;(3 (Taﬁvl + Q Apvdgp Ap.vxal)] 6t} drdt —
"\\ {Tagélxa + Q A”p&xs)‘ Bygﬁl Aap‘} ng dd dt (3.1 )
b}

Here @ is a scalar, which for most models is the absolute temperature, the quantities
ARy APYA
Fl’ TuBa Q ¥ ’ Q * ) N

are generalized loads and stresses defining for a small particle the external action and the
internal irreversible effects. First, setting equal to zerc the total variations 8, of the vari-
ables on the boundary of the four-dimensional region Vi (here by definition 8 W=0) we ob-
tain from the basic variational Eq. (2.1), by taking into account (2.4), {2.5) and (3.1), the

following system of equations
(3.2)

—pDJoy + VPP + Fa =0
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p 2 (A —vra— A*DA ) + 3.3)
+ Vs (PaPV* 4 g 8rn ", 28) +Q "W+ N + Fov* =0
2 +00=0, BA A% = Q" =T (3.4)
a5 5/-1““
me = caB + TQB, quvk = c‘\p&l + QA;L\O» (3.5)
Ja_iir JaB=A3M 9 A

T a(DA%,) P
Introducing arbitrary variations different from zero on the boundary, we can obtain Ex-
pression

W = é\ (PaPOLz® + ¢ ¥ 28, Byady A%,) ng ds dt +
X
+ 0 10:812" + Jupd™8,4% 1515 (3.6)
\2

Egs. (3.2) are momentum equations; (3.3) is the energy equation. The system of Egs.
(3.2) to (3.4) together with the Egs. of state (2.6) and (3.5) form a closed system if A and
SW* are given (i.e. A, Fo, T8, Q7 HY Q" KY? and N are given).

In the formulation of actual problems, in order to obtain a solution it is necessary to
have given the functional 8W on the boundary of the medium as well, which leads to the
following boundary conditions fort=1¢, and t=1¢,:

paanﬁ = Tq, q"*"“lx*;.\n., = q** ma 2 (3.7

Jo =Jd, JCB =J¢é for t=1; Jo=1J%, Jap= J,?; for t=1,
With the aid of (2.1), we can also obtain conditions at jumps [ 20],

If we assume that the Lagrangian A is equal to the difference between the kinetic ener-
gy and intemal energy

A=T-—pU (3.8)
then the equations of motion (4.2) may be reduced to the usual form
dy .
b S = Vapef + Fu (3.9)

From (3.6) and (3.9), it follows that de is a stress tensor component, and Fo is a com-
ponent of the body force vector. Utilizing Eqs.

Bpfax“y, == pgi‘a
and taking into account (2.5) and (3.5) for pa'B, we obtain

Ll
Pt =28, 3L 4 .8 (3.10)
ax“p‘
We now return to the previously obtained Euler Eqs. (3.4) for the internal degrees of free-
dom associated with the components 4%,. After some obvious transformations and taking
into account (3.5) and (3.4) may be reduced to the form

pDJaB = V?Kasz{ -+ pkaa, Ka{aY = {q AM)‘A@AWJEYA (31'1)

a A ARy Ay ~
phuﬁ = A ASI-" + a @ DA'QP‘ — Q * A“P-ABV - Q * )\v A (Aap.AAv)
(DA%,

aA“p‘
Egs. (3.11), antisymmetrized with respect to a3, are the equations of internal moment
of momentum. The quantities Jr«p] may be regarded as the components of the internal mo-
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ment of momentum tensor; K [, g]" are the components of the tensor of surface couples, and
h{gp) are the components of the tensor of internal body couples.

4, Equation of entropy balance. Phenomenological theory of ir-
reversible processes. Consider the energy Eq. (3.3). With the aid of (3.1) and (3.4),
it may be transformed into

d AWV __ A Ay A A ARy ~ A
PO % = N+ Q¥n’, + QI N + TN 0N (A)

Eq. (4.1) is the equation of entropy balance and may serve as a means of specifying the
generalized forces and stresses in S W*, We assume that the entropy increase connected
with N is specified only by the flow of heat q and that N satisfies Eq. N = — div q.

Internal production of entropy p®d, S will be denoted by odt and, from the definition, we
determine ¢ from the right-hand side of (4.1) as follows:

6 =201+ 0+ 03 (4.2)

0 =—07g "V "8, o=@ """, +0 ANAVAA“AM’ 0 =t "V "y
The quantity o, characterizes imreversible effects arising from heat flow, ¢, results from
plastic deformation, and 04 results from viscous dissipation. In accordance wi?.h the second
law of thermodynamics, o satisfies the inequality 0 >, 0, while 0y, 0, and 0; may in gen-
eral be positive or negative.
As a basic assumption, we consider ¢ to be a function of thermodynamic fluxes,

A A ry
V“p®, JT“p.\n V‘Aﬂ? BV v W o
the system of quantities in (2.3) and some additional (constant or variable) parameters ¥,

which appear(*) in the specification of SW*.

In addition, it is understood that )y are given functionals of the defining parameters
(1.8). In accordance with the general theory of irreversible processes [21 and 22] we specify
the functional dependence of o (or 0104 and 0'3) on its arguments, and consider that for
irreversible processes the generalized forces ¢ ™ & Q"KV, Q" K¥*apd T KV are related

to the thermodynamic fluxes by relations of the form

~ as Ay as AV aJc
— O = — By __ S won 2
q P-la(v ) Q ] o, Q Ko o,
ARV 66
T B = — 4.3
Psa(vvvp) (4.3)

Here, the partial derivatives are taken with ), = const. and iy, 1, and y 3 as coeffi-
cients. Instead of postulating (4.3), we could have taken other equivalent assumptions,
such as for example, those analogous to Drucker’s [ 23] postulate and the hypotheses of
Ziegler [21], Prigogine [24], etc. The addition of y, and utilization of various coefficients
[1» g » iy for different thermodynamic fluxes in (4.3) results in a relaxation of the usual -
ly accepted hypothesis.

Besides 0y, 0, and 03, it is necessary to specify the coefficients y,, ligy i3 SO as to

setish B 5 — i peve b Bevs, o= 7,0 5(—;"?@—) (4.4)
ds * ds

ds PRIEPN
Te = -T"Au.v'———.,\ + VvV A By

—_—, Ts = ot
o, (VAT ) VoW

IV 2

+) In particular examples of known models in the theory of plasticity, X, are given by the
following

i = S P8 defP),, o S V@), de®ep

The preceding theory is developed on the assumption that the Lagrangian A is indepen-
dent of .
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In particular, if the thermodynamic fluxes V”,0 appear in 0y only, 7%, and V317,

ino, only and V"vv"u in 0 4 only, then pt,, u,, §t; satisfy the relations

W71 = 0y, Re¥y = Oy, UgTs = Oy (4.5)

From (4.2), it follows that the absence of dissipation is related to Eq. ¢ = 0. Physically,

itis clear that for

VQ("):O, T[Ap.\.——'—o, vAZnAPnV:O, vAvU"u:O (46)
each of the quantities o, , 0,, 03 also vanishes. The converse is related to the properties
of the functions G+ 0,, 0, used in the construction of the models. In the general case,
Egs. (4.6) do not necessarily follow fromo, =0, =g, = 0.

Relations (4.3) depend essentially on the presence of irreversible dissipative processes
for o, # 0. For reversible processes, the second and third Eqs. in (4.3) must be replaced by
the corresponding relations for 7%, and V7", in reversible processes.

Below, it is shown that by means of the method developed here we can construct and
generalize many of the models used in applications, in particular models of plastic media.
In each case, the o {a = 1, 2, 3) are chosen as homogeneous functions of the corresponding
thermodynamic fluxes raised to some power k. The coefficients y1, are then determined from
(4.5), and are constants: R = k7t In particular, if o is a quadratic form in all of its argu-
ments, then 1, =, =, = 1/2, and the relation between thermodynamic forces and fluxes
will be linear. In that case, the Onsager relations follow from (4.3).

Models for plastic media cannot be obtained by utilizing linear relations between thermo-
dynamic forces and fluxes. In that case, the dissipation function &, may be chosen as a
homogeneous function of first degree {14 = 1) with respect to 7 Ap.v' a";\n"#v. It is clear
that in this case the tensor components Q™ “¥and Q * £V will lie on some surfaces within
the space of the variables {Q " #¥%,Q " #VY

F(@F, Q" %) =0, k=1, ..., m<36) (4.7)

which may be called the loading surfaces(*}. Indeed in the case under consideration, § “#V
Q" H¥3gg determined from (4.3) will be homogeneous functions of degree zero, and conse-
quently will not depend on all the quantities 7™, ,, and V& y but only on the indepen-
dent arguments of the form 17"22/71“11 yeesy the number of which is one less than the num-
ber of tensor components Q*#Y, Q"HV2, Hence, there must exist at least one relationship
of the form (4.7) among the generalized forces(**).

The entire preceding theory was developed within the confines of finite deformation

*) In the case of classical models in the theory of plasticity for & = 1, the relation bet-
ween the dissipation function and the loading function was investigated by Ivlev[25].
**) Ifo(x!) is a homogeneous function of first degree, then there exists a relationship
among the generalized stresses, which are defined by Formulas

3 , . z7 i=14,2,....n
Hi=T7 =m0 v=rg (;‘:2, 3, n)

Indeed, assuming that these relations for i = 2,..., n are solved for 1#, then we can

write i .
v = (X,,..,X})
Subgtituting these functions into the equation with i =1
X —@ ) =X — @ (X, Xy)) = f(X) = 0 (4)
we obtain the desired relation f (Xj) = O which interrelates the stresses X;. This rela-
tion may be regarded as an equation of a stress surface in the X, space. If there are
only s <n -~ 1 independent functions among n functions ¢, (v2,..., ") then the above
stated assumption (pertaining to s = # — 1) conceming the possibility of obtaining a
solution does not hold. In that case, instead of one equation we have n — s equations

of the form h (Xp=0 (k= 1,2,..., n -8
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theory; assumptions regarding small deformations can only lead to simplification or lineari-
zation of the previously obtained relations.

5. Classical models, 1° Ideal fluid model (gas). Here A= 1/2pv? -
— pU, whereupon the internal energy is a function of density p and entropy § only, and the
functional 3 W* takes the form

W = S S [pB8S |- F,8,2" -+ Nbt] dvdt (5.1)
Vi
The stress tensor is obtained from (3.10), md turns cut to be spherical
pP =—p8p, p=0p%U]d
The Euler Eqs, (4.2) become the equations of motion of an ideal fluid. Further, we ob-
tain
8 = (3U/ 88)p=const
For a given N, (5.1) yields the defining Eq. for S
p8dS/dt=N

In that case, in solving problems we may obtain and investigate the residual stresses

which are reversible by nature.
2% Model of a viscous, heat-conducting fluid (gas). The differences

from the ideal fluid are only in the composition of the functional §W*. For viscous fluid
models, we set

W = S S [988S + F 82" — 7,F 7,82 — div qb¢] d dt

Vi
The entropy balance equation in this case becomes
d ~
p6 df::.._edw egradB L AL VA

If we assume that there exists a dlssxpatmn function
- "~ q ~ ~ A
(V8 V0" L) =— g grad 8 +7 AV

where L,y are quantities defined in Section 2, then, taking into account (4 3}, we obtain
the following relations:
A e, 98 5 f (5.2)
69 1331 a(‘v &@)s p’a(‘\'\‘] p-)

If the dissipation function depends on Voe”  only through the componeats of the de-
formation rate temsor, then t"*' is symmetrical.

The classical Navier-Stokes model of a viscous medium is obtained by assuming that the
dissipation function ¢ is a positive definite quadratic form in V'\p_(@ and V”Vu"ﬂ. In this
case, the relations in (5.2) are linear and conform to Onsager’s principle.

The assumption of isotropy introduces substantial simplifications in the quadratic form
for 7, whereupon the coupling between temperature and viscosity effects disappears.

3% Elastic body model In this case, we have

A =100 —pU(e" pv' Sy Lipyds *”Apie):% (8" py — 8%

W = S S [pO8S - F,8,a® -+ Nt} dr dt
Vi
To obtain all the relations for a particular case of the system of equations given in Sec-

tions 3 and 4, we set
A
g’p.v = go}w & Aap, (g)') = xcp‘ {E}, Ly)
Since A%, defines the transformation from the observer coordinates x to the fixed basis
of the *‘initial”’state’’, the 49, are excluded from the number of unknown variables and be-

come parameters of the type L(p).
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The momentum equations are reduced to (3.9), wherein in accordance with (3.10) the
stress tensor components p ’ £ = g” “‘paﬁ may be written in the form

8l

8 va — .
X g =g p N
» e p_g‘”

pP=p :v"'pxgv == p"*""x"“xau

a
6:):!,‘

The formula for ® and the energy equation, equivalent to the entropy balance , may be

written in the form
aUu das
R
08 /¢ n{0)=const dt
By
4°% Models of plastic bodies, With some additional assumptions, many known

models of the theory of ideal plasticity and plasticity with hardening may be obtained from
the general theory developed in Sections 3 and 4. For this purpose, it is sufficient to take

A =1pr? —pU (8% 8735, L () (5.4)
W = S S [POBS - F, 8,2 — Q ¥8e" (P + Nér|dv di
Vi
In contrast with the general case, the components of A%, enter A and 5W* only through
the components of the metric tensor in the initial state
8% = 8ap A%, AR, (08 P =14(g*,, —g°,)]
Clearly Q”#¥ may be considered to be symmetric; in applying the general theory, it is
necessary to take into account the identity

Q" *6e~B) = Q" MB,,84%,

The arbitrariness of the variations Ge“(g’z = 15 bg*,, now leads to only six equa-
tions instead of the nine equations in (3.4):
oU
_ = 1,0~ (5.5)
e agﬂ'w BQ
From (3.10) as well as (5.3), we obtain the stress tensor.
oU
- —— {5.6)

P =p
e (9

In the important particular case, when the components g*),y and g",_”, in (5.4) appear
only as differences g";w - g%y = 23“‘&(3) , (a medium *‘with no memory”’} we obtain

prEY == QW (5.7)

It should be stressed that (5.7) does not hold for a medium *‘with memory’’, when the in-
ternal energy depends on the components of elastic deformation as well as the components
of plastic deformation 8"'(33. In accordance with (4.2) o, is given by

Gp == Q PV g) (5.8)

1f (5.7} holds, then {(5.8) yields
GeszpveAé{i‘) 5.9
However, for the general case, (5.9) does not hold. For a medium “‘with memory’’, {5.5)

may be written in the form
9 U U 108
P Pl e

— Q"

In that case, instead of {5.7), we obtain from (5.6}
U

s ane (5.10)
oe fﬁ)

Qapvzpp\p.\l —p
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For a medium *‘with memory”’, (5.9) is replaced by{(*)

U\ .
e (e )

The preceding discussion on 0, is essential, since (5.9) is widely used in the literature.
The complete equation of entropy balance (4.1) becomes in the present case

dS ~ qu‘ qu. A ARV a(p)
PO =—08V ", g 5 V @+ Qe E (.12)
The dissipation function o is given by
" a Ay, A
=—"g" V"8 +au, oy = Q" Me (D) (5.13)

Formula (5.13) shows that only for isothermic states is the requirement o, 3,0 complete-
ly substantiated.

From the condition that the entropy increase must be independent of deformation time,
we obtain the result that o ,, which is a homogeneous first-degree function in eA{zf)v , may
also depend on the appropriate hardening parameters .

From the theory developed in Section 4, it follows that for irreversible processes

852

0eA!(,_pv)

Relations (5.14) together with (5.5) may be regarded as equations defining the plastic
deformation rate tensor ¢ *'0),.

These relations replace the associated rule. After determining the loading functions from
(5.14), we may obtain [25] the associated rule which generally contains the components
Q"™ H¥ but not components of the stress tensor p ™ 4%, as it was assumed in [25].

Note that in the case under consideration relations of the type given in (5.14) may be
written for p " AV as well as Q74

Q™ = (5.14)

99

ARV
r - ~
de gj)

However, the function § S 0 differs from the dissipation function 0,, and it follows
from (5.10), (5.14) and (5.4) that the relation between the two is given by

— 8u ~ (P
¢—52+9W8 py T O
where @ is an arbitrary function which is independent of e"{ﬁ) .

For a medium ““with memory”’ in accordance with (5.10), Q™ #¥ may be replaced by p * #¥
as arguments of the loading functions. For reversible processes, we may take o, = 0. In
many typical cases, it follows from o, = 0 that e“(lf)v = 0, However, we can consider func-
tions o, such that residual or plastic deformations may arise for reversible processes.

Given suitable forms of the internal energy and the dissipation function, we may obtain
from (3.2), (5.12) and (5.14) concrete models in the theory of plasticity for which the har-
dening parameters ¥ , are given functions or functionals of the defining parameters. If the
dissipation function @, is of the form(**)

o=k Vepslp)e(p)w

*) An explanation of the distinction and relation between the dissipation and the work due
to the stress tensor for plastic deformations is given in [14] (p. 269).
**) For such a choice of 0,, the plastic deformation rate tensor may be replaced by the de-
viator of the plastic deformation rate tensor. The corresponding changes in the resul-
tant formnlas are evident.
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where & is independent of ep_,(,p), then it is easily seen that the Q"/¥, defined by (5.14),

lie on the surface

Q"™Q*,, =k (5.15)
In the ideal plastic model of von Mises [21]
U=U@"(), S, L) k == const
In the Schmidt-Osgood plastic models with hardening, we have
U=U@&", S, L) k=k{y)

where ¥ is defined by the relation dy =+/de (p)da(ph"" and k() is an empirically deter-
mined function. Since the internal energy is, 1n these cases, independent of the plastic de-
formations, (5.7) holds and the equation for the loading surface may be written in the form
p S p.vp Ap — k2
For models with translation hardening, we set

U=Uo(@®"$), S, L) + Vet * (Plg A (PIRY, k = const

Here, instead of (5.7), we obtain
Q»\;.w___: pAp.v_caa(p)p.v
Thus, the loading surface equation {5.15) takes the form
(P — e P (pr,, — et (P =k?

6. Example model in the theory of continuous dislocations. The
vari ational principle permits the construction of various models of media with continuously
distributed dislocations. Below, we examine a particular example within the confines of
small deformation theory(*); in this model, the kinetic energy is related only to the inertial
properties of the actual state T'= % pv?2, while the internal energy is a quadratic form in
the components of the elastic strain tensor & (f) , in the entropy difference S ~ §, between
the deformed and initial states, and, by contrast with classical elasticity theory, in nine
other internal parameters which are components of the dislocation density tensor §

U= l/ZAaBYsaa(Be)nge) + Baaeag) (‘S - So) -+ Casﬂaa(se)‘sws +
+ DS (S — 80) + 1EoysS™PS™ + £(8)

where 4287 8 EqBys are given nonvarying parameters (in the general theory, they cor-
respond to the parameters L(p)) An additive constant may be taken as a function of the en-

(6.1)

tropy f(S).
Set
A=T—pU
owe = (10085 + 7,8,5% — 0452, — 7, (B,,84%) —divqstidrar  (6.2)

A
In correspondence with the general theory of Section 5, the components @ #¥ and ¢® are
defined by (4.3). The dissipation functions are given by the following Expressions:
o1 =87 F*(7,8) (V,9) (6.3)

as ds . ds.. "\
— 5, (), (D) 8Y8, (p) Y8 5 _"aB T"v8
= (K"‘BY eaile ) + 20770, (P — = 4 Pt —

(6.4)

*) As we know, in the theory of small deformations the components of the strain tensor in
the observer reference system and those in the moving reference system are identical.
As a result, we will omit in the following the symbol ®, and we will not distinguish be-
tween operators D and d(...)/dt, 3 (...)/0 EM and 3(...)/ I %® when they are applied to com-

ponents of small tensors. Moreover it is assumed that g pv(f )= g“y(f}‘)
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Here, FoB, KaBY8 L aBY3 and M*BY? are components of physical properties of the
medium which, in view of the positive definite character of 0y and 5,, must satisfy the
known inequalities. Utilizing (4.3), we find that, for small deformations, the following Eqgs.
hold:

dSyg5 ! dt =1/, a‘“’avYnBs (6.5)
From (4.3) and (6.3) to (6.5), it follows that
¢* =—F*¥,0 (6.6)
ds. 1 as
a8 __ ala _ 2 ) 5 Y3
Q¥ =Q"*= e T = o (K“B* o) + L — ) (6.7)
059 [o 2

e
O =G ) = T@s ) o =R e (6.8)

From (6.8), we obtain eighteen relations
QBGY + Qﬁw —0 (6.9)

which are part of (4.7), defining a loading surface in the space {Q a.ﬂ, Q 287}, The remain-
ing nine components Q Blov] may be expressed in terms of the nine components of the ten-
sor

36, 1 ds 5
B__ > T 5 5 My
R = 3(dBy5/dl) o (LY oo ?) + MY 7“—) (6.10)

In the space {Q""B, ReB }, the equation of the loading surface takes the form
17Q*?, R, KT8, L3S, M) — 0 (6:41)

In the case under consideration, we obtain from the general theory, Sections 4 and 5, the
following system of equations, consisting of the equations of motion (3.9), entropy balance
a

as q
W0 g =—8Vag Tt
Egs. for the internal parameters (3.4)
B aB _ 28
1,8YP 7, (R°* 4 2°%) 4 p** = Q" (6.12)
Egs. of state
plp*P = A% () | BB (S — 8 ) + B 487 (6.13)
p7IZ = C%F e ) £ D (S —80) + EpgysS™® (6.14)

as well as (6.6), (6.7) and (6.10). Egs. (6.12), symmetrized with respect to af3, differ from
(5.7) of the theory of plasticity by the term 1/2 ¢¥Ps<y (R°* 4 2°%). Egs. (6.12), alterna-
ted with respect to af3 take the form

Vg (R 4 Z,8) — eV, (RF + 2) =0 (6.15)

Here, the primed quantities denote the respective deviators. In problems for which homo-
geneity of the particles exists, i.e. when v",, A%, = 0 and V~,5 = 0, we obtain S#¥ = 0 so
that the solution for the proposed model coincides with the solution obtained for the same
problem by considering the model to be that of a plastic medium “‘with no memory’’ as dis-
cussed in Section 6.

Relations (6.12) may be utilized to replace Q%3 by p%B, Ro%and 39% by vy R9% and
Vay 2%%in (6.11). Hence it is clear that it is convenient to operate with 098 in place of
p B when formulating the loading conditions.

(Note that taking into account the kinetic energy and inertial properties of the initial
state would lead to a complication of (6.15) by terms of the form dK ,/dt where K4 is a gen-
eralized impulse associated with the motion of dislocations).

Thus, we have a general linear theory, taking into account anisotropy. All preceding for-
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mulas become substantiaa%' simplified if anisotropic properties manifest themselves [29]
only through e(p)ﬁ and S%0, In that case, instead of (6.6), (6.7) and (6.10) we obtain

X

% = — x%8 (6.16)
1 Sy \ S 4oy
Qap="5, [""’gg + (1265%) + g ) 8 8t gy

ds
3 ¥8 L ot
B dt ) 8" 8as oy Hhyy
where %, [y ,..., l; are scalars which in the general case may be considered as functions
of the scalar invariants of the defining parameters, while in the linear theory they may be

taken as constants. The loading function (6.11), corresponding to the dissipation function
(6.4) may be obtained by substituting into the right-hand side of the following Eq.

1 as,, A8y, ”
Rap=5- {54% (» - (zaeg’; + i > =

ds,
8

Gy = QﬁBe&pB) + QaﬂYvynaB — Qdﬁeagp) _+_ R!IB T

the quantities e(ﬂ)p and dSqp3/dt, which from (6.16) may be experssed in terms of()‘gQ"‘[3
and 09 R* and which appear in the form

JTQ*, R, 1y, o 1) = (Qqp — €3 Rap) (Q'™ — 0, R*) — g R ) R *P) —
— CsR[gg]R[“B] — (gaBREB )2 —cy (gQBQaB )2 — (gaBRKIB) (gszuﬁ) —cy (617)

where ¢, €4,... g are defined in terms of {,..., {5 in an obvious manner. The loading
function (6.17) is a second order surface in the space {QafB, ReBY 1t ¢; = const., this sur-
face is fixed. If ¢5 = ¢ = 0, then the plastic deformations are incompressible. The case of
ly=comsty ly=ly=...=l,= 0 (cl =..=¢ =0, ¢, = const.) corresponds to an ideally
plastic body, studied in Section 5, in which case R = 0.

In the general case, R%’ is nonzero and describes the hardening phenomenon. In the
stress space {Q“ %5}, the loading surface is a sphere whose center ¢; R*3 varies with time
and whose radiusr

re=cp czRé‘S)Rf(aB) + C3R[a£]R[aS] +e, (gaBRmS)z

also varies during the process of deformation. Concrete models are obtained by a choice of
the coefficients [; (orc,).
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