
DYNAMIC THEORY OF CONTINUOUSLY DISTRIBUTED 

DISLOCATIONS. ITS RELATION TO 

PLASTICITY THEORY 

PMU Vol. 31, No. 6, 1967, pp. 981- 1000 

V.L. BERDICHEVSKII and L.I. SFXIOV 
(Moscow) 

(Received April 11, 1967) 

The theory of continuous dislocations deals with a continuous medium having a continuous 
distribution of defects in microstructure, namely dislocations. Below, we construct a class 
of models of continuous media, which comprise many known models as well as other models, 
including viscous, elastic and plastic effects and the motion of dislocation defects. 

In particular, a variational principIe, the internal energy and a dissipation function are 
utilized in the construction of models of plastic bodies. 

In describing the distribution of dislocations in terms of a number of defining parame- 
ters(*), it is necessary to include some additional new characteristics. In view of the fact 
that these additional characteristics may be chosen in various ways, different theories 
arise. We will begin with a brief review. 

In the works of Kondo, Bilby, KGner, Sedov, Kunin and others [l to 81 the continuum is 

supplied with a manifold of affine connection M, and the dislocation characteristics are 
given by the metric tensor, and the curvature and torsion tensors of the manifold. The mani- 

fold M may .be introduced by various reasoning processes. Bilby 13 to S] constructs the man- 
ifold M on the basis of lattice theory, and obtains, as a result, the curvature tensor equal 
to zero (nine new degrees of freedom). Kondo [l and 23 defines the manifold M as the mani- 

fold of initial states which represents a metric manifold of affine connection of the most 
general form. The independent parameters are given by the metric tensor g *a~ and the tor- 

7’ sion tensor Sop of the manifold M (a total of 15 new parameters), while the curvature ten- 

sor is expressed in terms of their first and secon 1 .~CIG atives [Q and IO]. Supplementary 
equations are necessary for g*g and S M r. In his work, Krijner [S and 11] proposes a meth- 

od of obtaining these equations, given the curvature tensor as a function of the coordinates. 
The case for which the curvature tensor vanishes is called the “restricted” theory. In that 
case, we have absolute parallelism, i.e. the basic assumptions of Bilby’s theory are fulfil- 
led. By linearizing the equations of the “restricted” theory, we obtain the equations of the 

so called.elementary theory f ll]. 
If the torsion tensor vanishes, then the manifold M is Riemannian, and may be imbedded 

in a Euclidean space E of a greater number of dimensions. By allowing the geometric char- 
acteristics of the manifold M vary with time, we obtain displacements of M in E. The com- 
ponents of the displacement vector of M in E may be taken as the defining parameters. Cor- 
responding equations for reversible phenomena are obtained in [2] (see Vol. 31 by means of 
a variational principle. 

In tl2 and 131, the defining parameters are introduced without involving any concepts 

*l The behavior of a medium is considered known if a system of quantities called the de- 
fining parameters are known functions of the coordinates and of time. 
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from differential geometry; the dynamic equations are constructed by averaging the equa- 
tions are constructed by averaging the equations of motion for discrete dislocations 1121. 

Although the analysis confined itself to linear theory, the results obtained were in the form 

of extremely complex integrodifferential equations which were difficult to relate to the the- 

ory of plasticity. 
Below, we will show that in order to describe the distribution of dislocations, including 

known plastic models, it is sufficient to introduce nine new (compared to classical elas- 

ticity) degrees of freedom (three more degrees of freedom than for the general case in the 

theory of plasticity). 

1. Defining parameters. We consider the motion of the medium with respect to 

some general curvilinear reference system of an observer with space(*) coordinates ~4 time 

coordinate t and coordinate basis 3,. We also introduce a reference system(**) moving 

with the medium with Lagrangian coordinates tp, time coordinate t and coordinate basis 

3”, . The motion of the medium is defined by the relation between these two reference 

systems [lb]. 

za = 5a (%‘, t> 

The base vectors aA,, and 3 “p are obtained from 3, and ae by an affine transfor- 

mation (at each point) 

Here, g ‘$p d gup are the covariant components of the metric tensor in the moving ref- 

erence system and the observer system, respectively. 

Consider two (isomorphic) groups of coordinate transformations 

xe 3 y@ (Z”), %p-+ 7iy (5”) (1.1) 
where y fi are the new space coordinates of the observer system while q Y are the new Lag- 

rangian coordinates. 

Thus, 

3, --+ 38 69 / dy”, 3A”-+3*Yd?f/d~Y 
Let A be an invariant of the form 

A = A”,3,FP = Cfivp3ry3*1L 

It is clear that A> behave like the components of a contravariant vector for coordinate 

transformations of the observer reference system (for fixed p) and like the components of a 
covariant vector for transformations of the moving reference system (for fixed u). The com- 
ponents C n vP form a second order tensor for coordinate transformations of the moving ref- 

erence system. The quantities Aup and C”“* represent the same tensor A, and correspond 
to two different choices of base vectors. In particular, for the metric tensor G we have the 

representations 

G_ = ro7ap3”3’ = sa,3,3”jL = g”,,=-)‘+3^” 
Below, we consider the derivatives of A with respect to the coordinates, defined by For- 

mulas 

- _.._- _ .._- 

*) The space coordinates are associated with Greek indices which range over the values 
of 1, 2, 3. 

**) Quantities referring to the mobing system are denoted by the symbol n. 
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=5 77,APp3p3”“3a = T7”yA”,383+%“’ 

where ]r,p’and I? nPV’ are the Christoffel symbols for the cases 3, and BAp, respec- 

tively. 

It is easily shown that x z and 4 +a are constant with respect to covariaut differentia- 

tion(*) 

V&-b = 0, V&‘a = 0 

The time derivatives of A may be defised in many ways [14]. Hereafter, we will utilize 
the individual derivative of the following form<**): 

d 
DA = dt (AaB3a3+) E~,aA~ =const = % + l’ByaAQp~Y V.2) 

where vy = dxY/dt are the velocity components of the.material points. The derivative DA 

is calculated for stationary Lagrangian coordinates c A with “stationary” Lagrangian ba- 
sis 3-P and taking into account the changes in the base vectors 3, for a moving mater- 

ial point. 

It is evident that, for a coordinate change, DAup transforms like AuP 

In order to construct the proposed continuous dislocation theory, it is sufficient to con- 
fine ourselves to the following collection of invariant, defining parameters: 

v = vb3a, G = gas3”3@ = ~~~3~3~~ =: g^,,3”“3*” 

A= Aa,3,3+ = C”‘,3^,3”“, !$3*‘, DA 

where S is the entropy, while L@) is the collection of tensors characterizing the physical 

and geometric properties of the medium in the initial state (for exampIe, anisotropy). Among 

the tensors L@t, we may include the tensor 

Go =I: g”,,3*“3Ay 

defining dso , the distance between particles in the initial state 

dso2 = g”, dE) dE 

By definition 

Compared to classical elasticity, the number of defining parameters includes nine new 
degrees of freedom, namely the components of A. These may be given the following physi- 

cal meaning. 
Consider an infinitesimal particle with Lagrangian coordinates ci” remove it from the 

*) In [ 15 and 161 the covariant derivatives of z “’ were introduced differently, and were 
nonzero. 

**) Here, note 1141. 

d3, / dt = l’$3Yv5 
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body and remove the external loads. The particle will then deform, and the base vectors 

3^v will become the vectors 3,“. A deformation of this type may be described by tensor 
A: 

3*p = cnvgvv = A”,3, (1.4) 
After deformation, the particle will be in an unstressed state, so that the components 

CAvP of A describe an elastic deformation(*). Moreover, from the basic condition we find 
that the components of A depend only on the coordinates tpand time t. In connection with 

A, we can introduce the physical parameters: 1 
tensor of elastic deformation 

qy = % (a Ap” - g”p,,), g*p, = ga,dapAQv 
tensor of plastic deformation 

8;:p) = l/a (g*,” - go&V) 

(I.3 

(1.6) 

tensor of plastic deformation rates 

ei;“yfPf = de;ly(p) / dt = lJz dg*py / df = ‘,&gap (A”&@, + &I)A”,) 

tensor of elastic deformation gradients 

v hAE&@) = - ljaV 4hg*py E - ‘/agag ( A”,S7^xABv + A to *hAap) 
Consider a closed contour L within the body. It is clear that 

For the elastic deformation described above, each infinitesimal element dt= ‘3Apd’[p 
becomes dr * = 3 ;d[p. The integral 

$dr* = $3*,dE’ 

is generally nonzero and equal to a vector bCL,, which connects the ends of the broken con- 

tour L after elastic deformationf**) 

By (1.7), each (finite) closed contour L corresponds to a vector b(L) called the Burgers 
vector. 

Suppose that at some point tp there is au infinitesimal contour surrounding the area da 
with normal n. Corresponding to this, there is an infinitesimal Burgers vector b,,,, which 

depends on [, n and da. In order to obtain the Burgers vector at the point [fi, we pass to 

the limit 

lim btn) - Snwhnh03* 
da4 El” - 

)il s -4 
= “/&“‘“‘Bh,v ^,Aa,, (1.8) 

In (1.8), E~O~L” denotes the components of the alternating tensor, with eAla3 = l/G; 

B’“, are the components of the matrix( ***) which is the inverse of A = \jAadl. Thus, the 

*) 

**j 

**q 

The tensor in (1.4) differs from the one introduced in [6], A = AQa3a3’ (U = 1, 2, 

g), by the ruIe of component transformation, since the vectors 3o form a different ba- 
sis which does not correspond to 3*, 
Square brackets around indices denote an alternating operation while parenthesis 
around indices indicate symmetrization. 

The positions of the indices of Aup are essentially as given. Consider the lowering of 

indices of Aau and Bpo with the aid of metric tensors gd and g*Uv for u sud cc, res- 

pectively. Since 
(Footnote continued on nert page) 
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components of the Burgers vector bp’,) 
fi 

at a point are defined by the normal tt and the ten- 

sor SA ok ((p, t), which is called t e dislocation density tensor. In association with 

S “ah, ws consider the third-order tensor a which is antisymmetric with respect to the in- 

dices /LV 

a = SApy A3”iL3*Y3~h, S’$ = BXa~A~~Aavl (1.9) 
and which is related to S” oh by the transformations 

SQ = E+j&Yh, S Aok = lfzcs 
*W&v 

Snpvk 

The tensor SaPV X will also be called the dislocation density tensor. 

*f$,, ’ b(2) end b(3) denote the Burgers vector on the surfaces whose normals are given 

by al, 3s and 3a, respectively, then the surface whose normal is n is given by 

b(n) = b(r)n’ + bta)n2 + b(a)n8 (1 .lO) 

It follows from (1.8) and (1.10) that the Burgers vector is analogous to the surface load 
on do while S” 0x is analogous to the stress tensor. 

We introduce Tf = 3t*PV3Ap3*v, given by the relation 

d3*, /at = 11*pv3*’ = DA”y3a 
Whence 

JcE*p* = &DAav 

The angular velocity for the affine transformation (1,4), defined by A% will be called 

the 
3R 

lastic whirl. The corresponding antisymmetric tensor will be denoted by o=f2^,,3^p 
y. It is easily seen that 

s-2 *pv = n^[pv] (l.11) 

Note that the components of the plastic deformation rate tensor may be expressed in 
terms of the components of n by Formula 

,4?Jf 
IL* =3c *tiM (1.12) 

Above, in introducing the dislocation characteristics, no use was made of geometric 
terminology. Correspondingly, the dynamic theory, below, requires no geometric interpreta- 

tion. However, in order to establish relations between this theory and the kinematic theo- 
ries which are already known and to gain additional information which may facilitate a com- 
parison between theoretical and experimental results, we will show how one may construct 
from A a metric manifold of affine connection for the “initial” state. 

Define, in the moving coordinate system, the geometric quantity 

(2.13) 

It is easily verified that, in going from. one moving coordinate system to another, r*‘,, 
transforms like the Christoffel symbols and that g*ccy defined in (1.5) behaves like a con- 

stant under covariant differentiation, with regard to r*aPy, i.e. 

(1.14) 

The dislocation density tensor S”pvh coincides with that part of the Christoffel symbol 
which is antisymmetric with respect to PV 

(Footnote continued from previous page) 

A,, = g,#$ Bp.z = gLV $‘a 
then it follows from (1.5): 

*e, = B,, 
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(1.15) 

The manifold of the “initial” state with the:emaining plastic deformations is introduced 
as a manifold(*) with Christoffel symbol r* 
SAPyx. It follows from (1.14) and (1.15) that 

Pf* ,Vy,etric tensor g*Pt, and torsion tensor 

f 

may be expressed iti terms of the met- 

ric and torsion tensors by the formula [9 and 10 

r*$ = -i I ;+ + sA,;l-sA~;--sA;~~ (1.16) 

where 

Computation (taking into account (1.5) and (1.13)) h s ows that the curvature tensor of 
manifold M vanishes 

(1.17) 

Substitution of (1.16) into (1.17) yields th e relation between the metric tensor and the 
density dislocation tensor. The resultant Eqs. 

are called by some authors the fundamental geometric law. Note that, at each (fixed) point, 

the components of the metric tensor and the dislocation density tznsor are kinematically 
independent, since (1.18) contains the derivatives of g*Py and S Pt,a with respect to the 
coordinates. 

By linearizing (1.18) it is possible to separat%thehparts of ReS which depend exclu- 
sively [8] on derivatives of g;,, from those of S PV 

The tensor NaprS is called the incompatibility tensor. A study of (1.19) as fundamental 

relations in the static, linear theory of dislocations is given in [6, 8 and 111. Given the in- 

compatibility tensor Nap.,, 3, it is proposed to find the metric tensor g*Py by use of (1.19) 
Such a formulation cannot be considered satisfactory, for in a realistically posed problem 
the incompatibility tensor itself must be determined in the solution of the problem. 

Below, we obtain the dynamic equations for Aap with the fundamental geometric law (1. 

18) satisfied identically everywhere. The tensors g*,+y and SsVa are obtained from the 

known AaP by Formulas (1.5) and (1.9). 

2 Variational principle, The various models will be constructed with the aid 

of a variational principle [7 and 15-171 

ta 

S\\Adzdt+BW+6W*-0 (2.1) 
i4, 

Here i\ is the Lagrangian, V is an arbitrary region associated with the particles of the 
medium, and d ‘t’ is a volume element 

‘) In Krbner’s restricted theory [ 111 with 3% as a basis for the initial state manifold, the 
components of the Christoffel symbols vanish. In the theory developed below, we have 
from (1.4) 
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dz = dg” dgf dc2 dE" = l/g dsl dx2 dti, g” = det/Ig*,v II, g = detllgct~ Ij 
Eq. (2.1) is taken for arbitrary variations of the defining arameters which are nonzero 

on the boundary of the region of integration. The functional % W is the integral over the 
boundary of the four-dimensional region in the space of tp, t, taken with respect to a linear 
combination of the variations of the defining parameters, and is to be determined, while 6W* 
is some given functional(*). The Lagrangian A is a function of the tensor components in 
(1.3). has the dimensions of energy density, and is a scalar with respect to the transforma- 
tions (1.1). we assume for simplicity that V AYAap enter the Lagrangian only through the 
components of the dislocation density tensor U, defined in (1.9). 

We determine the variations of the arguments of it (1.3) in an arbitrarily chosen but fixed 
observer reference system. In (2.1), by the stated conditions, the quantities varied are the 
trajectories of the particles of the medium 

&Y = Z’U (F”, t) - za (E’“, t) 

The independent parameters A and the entropy S. For the variation of the components of A, 
we set(**f 

6A = /da,3, (2’) + (E) - Aa&_ (5) ?P1” (c;) = 6Aa,3,3^@ 

Under coordinate transformation, the 8A$ transform like the A$. For the variation of 

derivatives of xaand A, we employ Formulas 

6v = v’i+ (z’, t) 3, (z’) - VO’ (x. 4 3, (4 = rd @la) I & + ra.<eu%x ] 3, = (D&P) 3, 

6G = z’ap3a(z’) 3”” (E) - ~~~3~ (z) 3^” (4) = &‘t~7@3a3~~ 

6 (DA) = 6 (D43,3+) = (I&4’=,) 3,3&p = ; @iA) 

6a= (&YJ 3^p3*y3Ah (2.2) 

From (1.91, we obtain 

6s” $= Bh&7nIIL6Aayl - 6B”a’;j’*ipAsv1 = Bh&‘*&4=v~ --s-,,‘+,&A=, 

From the relation BhpAfip = a$, it follows that &“a = - Saa13~8ffaP 
Components of the tensors ZQ) are regarded as specified functions of ep and therefore 

are not varied. 
In the basic Eq. (2.1), besides varying the functions (for constant [p) we also vary time 

t by displacement over an infinitesimal 6t. For the limited purposes of the present paper 
such a time variation is sufficient{ ***). It is evident that for arbitrary A, we have 

61A=A’(E”, t’)-A(%‘, t)=6A+DA.B 
The symbol 6, will be used hareafter to denote total variation, while the symbol 6 will 

denote variation for constant t. In particular, we can write for 8,x a 

&sFd = z’a (E’) f) -a? (E”, t) = &x” + v”dt 

‘f The functional 6W is determined, for known h and 6 IV*, for an arbitrary region Vt. As 
a result, we obtain the equilibrium equations, The energy-momentum tensor (in parti- 
cular the stress tensor) is determined with the aid of the functional SW, and not by 
means of equations alone, as is generally done. The functional 6W* contains terms 
which take into account changes in entropy and addition of heat. This makes it possi- 
ble to obtain the proper equations for reversible and irreversible processes. An eqna- 
tion of the form (1.2) was used by Toupin [Lg] and by Mindlin 1191 with a fixed region 
Vt occupied by a body and with a given time interval[tt, tz] to obtain models of me- 
dia with reversible processes only, without taking into account the effects of heat. In 
that case, the functional 6 I is used only for the formulation of boundary conditions. 

**I The arbitrariness of the variations permits their determination by various means. 
***) In addition, it is assumed that tI and tP are independent of @‘ l 
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In the following, variation of the integral of h will mean the variation 6,. From (2.21 and 

the above equations, we have (2.3) 

Here, by definition, the density of the medium is p = f([*)/\/g^. The variation of the 

first term in (2.11, is given by 

8~~~Ad~dt =~~{Xa8xa+~8Aa”+ $j SS+ [~ .$~+s?._~_ 
Gi Yf Y 

-DA”, a “) + vB (Q,@u~ + LS * Y~%c *.pxfJh)] ht} dz dt - 
a pAa,) fJ 

(2.4) 

Here, np we the components of the vector normal to the boundary of the space region I’, 
namely the surface z. In (2.41, we have introduced the following notation: 

an - 
as A@* * 

3. Basic equations. Further, by definition, we set 

6W”= q 
SSI 

pO6S + F,61xa - ~a~y7~&x” - 

- QT3,,8Aa*vt - Q “““y7 hh (~~a8Aa~) + iV6t) 
I 

dz dt = 

=i$lpMBS + (F, + V~Z$) 8xa + (- Q "pY+?~QliVA) Bp.8A"v + [F~v” + N + 

+ vp (t&= + Q “py% npyxak)] 8t) df dt - 

-lb ra@ba + Q * v”hz?i B,81 A”,] na da dt (3.1) 
Ct 

Here @I is a scalar, which for most models is the absolute temperature, the quantities 

Fap ~a’, Q “t”V, Q”“‘, N 

are generalized loads and stresses defining for a small particle the external action aud the 
internal irreversible effects. First, setting equal to zero the total variations 6, of the vari- 
ables on the boundary of the fou~dimensional region Vr (here by definition 6 II’= 0) we ob- 
tain fmm the basic variational Eq. (2.1). by taking into acconnt (2.41, (2.51 and (3.11, the 

following syatem of equations 

(3.2) 
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(3.5) 

Introducing arbitrary variations different from zero on the boundary, we can obtain Ex- 

pression 

6W = C * (pa@8,x” + q 

11 

Ap.vhxfiXBPa614aV) na d5 dt + 

i 

+ 1 P VGW + ~~~~~~~~~=~I~ A (3.6) 
Y 

Eqs. (3.2) are momentum equations; (3.3) is the energy equation. The system of Eqa. 
(3.2) to (3.4) together with the Eqs. of state (2.6) and (3.5) form a closed system if A and 
SW* sre given (i.e. A, F, zafi, Qnp”: Q*pF”“? and N are given). 

in the formulation of actual problems, in order to obtain a solution it is necessary to 
have given the functional 6 W on the boundary of the medium as well, which leads to the 
following boundary conditions for t = tt and t = t2 : 

(3.7) 

J - J,l, sIB = Joi 
With” th, aid of (2.1). 

for t = .G J, = Jz,, Jab = Joi for t = ta 

we can also obtain conditions at jumps [20]. 
If we assume that the Lagrangian A is equal to the difference between the kinetic ener- 

gy and internal energy 

h=T--pU (3.8) 
then the equations of motion (4.2) may be reduced to the usual form 

(3.9) 

From (3.6) and (3.9), it follows that p$ is a stress tensor component, and F, is a com- 
ponent of the body force vector. Utilizing Eqs. 

ap / dX@& = - p&o 

and taking into account (2.5) and (3.5) for pop, we obtain 

pas = x+& 80 + za@ 
aXa, 

(3.10) 

We now return to the previously obtained Euler Eqs. (3.4) for the internal degrees of free- 
dom associated with the components Auw, After some obvious transformations and taking 
into account (3.5) and (3.4) may be reduced to the form 

pDJ,, = ~-&,~ + ph,,, Kzpy = q *“’ AavABPxY~ (3.11) 

Eqa. f3.11), antisymmetrized with respect to ~8, are the equations of internal moment 
of momentum. The quantities 1~~~1 may be regarded as the components of the internal mo- 
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ment of momentum tensor; K [aa~Y are the components of the tensor of surface couples, and 

hlagl are the components of the tensor of internal body couples. 

4. Equation of entropy balance. Phenomenological theory of ip 
reversible processes. Consider the energy Eq. (3.31. With the aid of (3.1) and (3.4), 
it may be transformed into 

Eq. (4.1) is the equation of entropy balance and may serve as a means of specifying the 
generalized forces and stresses in 6W *. We assume that the entropy increase connected 

with N is specified only by the flow of heat Q and that N satisfies Eq. N = - div Q. 
Internal production of entropy pod, S will be denoted by odt and, from the definition, we 

determine o from the right-hand side of (4.1) as follows: 

Q = Ql+ Qa + 63 (4.2) 

01 = - 6-lqApy7 *@, a2 = Q+“x*~” + QAp”h~*Adp”, 43 = z+“v ““Ui 
Th e quantity u1 characterizes irreversible effects arising from heat flow, u results from 

plastic deformation, anda results from viscous dissipation. In accordance wr *h the second 

law of thermodynamics, cr satisfies the inequality o >/ 0, while gl, o2 and Ok may in gen- 

eral be positive or negative. 
As a basic assumption, we consider cr to be a function of thermodynamic fluxes, 

7&o, +Y, V^hJt ^,“, VA”& 

the system of quantities in (2.3) and some additional (constant or variable) parameters xe 

which appear(*) in the specification of 6W*. 
In addition, it is understood that xS are given functionals of the defining parameters 

(1.3). In accordance with the general theory of irreversible processes [21 and 221 we specify 

the functional dependence of cr (or ol, D 2, and o3 1 on its arguments, and consider that for 

irreversible processes the generalized forces qnp, Q*pY, Q”I.LVXand ~~~~ are related 

to the thermodynamic fluxes by relations of the form 

(4.3) 

Here, the partial derivatives are taken with xe = const. and ,u, , p 2 and /.J 3 as coeffi- 

cients. Instead of postulating (4.3). we could have taken other equivalent assumptions, 

such as for example, those analogous to Drucker’s [23] postulate and the hypotheses of 
Ziegler 1211, Prigogine [24], etc. The addition of x,, and utilization of various coefficients 

pl, g2 , p3 for different thermodynamic fluxes in (4.31 results in a relaxation of the usual- 

ly accepted hypothesis. 

Besides crl, o2 and 03, it is necessary to specify the coefficients ,ut, pz, pg so as to 

satisfy Eq. 
Q = p1r1+ CL2ra + P3T37 r1= VA,0 a6A 

am p@) 
(4.4) 

+) In articular examples of known models in the theory of plasticity, xs are given by the 
fol owing P 

x1 = 
s 

paB de@&, x2= <de;“)8 de(p)@ 
s 

The preceding theory is developed on the assumption that the Lagrangian h is indepen- 
dent of x.. 
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In particular, if the thermodynamic fluxes VA@ appear in crt only, rrnPr, and ~*~nnPy 

in o2 onIy and 03 uficL in u 3 only, then pt, p2, /.t3 satisfy the relations 

PlTl = 01, P‘2r2 = 027 PST2 = *'s (4.5) 
From (4.2), it follows that the absence of dissipation is related to Eq. u = 0. Physically, 

it is clear that for 

v;^,o=o, ZCP” = 0, V %tAl+” =o, ~A”UAP=o (4.6) 
each of the quantities at, cr2, o3 also vanishes. The converse is related to the properties 

of the functrons ot I a2, a3 used in the construction of the models. In the general case, 

Eqs. (4.6) do not necessarily follow from a1 = o2 = CT~ = 0. 

Relations (4.3) depend essentially on the presence of irreversible dissipative processes 

for oaf 0. For reversible processes, the second and third Eqs. in (4.3) must be replaced by 
the corresponding relationa for R 

* 
and Vnh~ApV in reversible processes. 

Below, it is shown that by met: of the method developed here we can construct and 
generalize many of the models used in applications, in particular models of plastic media, 

In each case, the os( u = 1, 2, 3) are chosen as homogeneous functions of the corresponding 

thermodynamic fluxes raised to some power k, The coefficients pa. are then determined from 

(4.5), and are constants: pa= k-,‘. In particular, ifo is a quadratic form in all of its argu- 

ments, then p1 = ,uZ = p3 = l/2, an d the relation between thermodynamic forces and fluxes 

will be linear. In that case, the Onsager relations follow from (4.3). 
Models for plastic media cannot be obtained by utilizing linear relations between thermo- 

dynamic forces and fluxes, In that case, the dissipation function o2 ma be chosen as a 

homogeneous function of first degree (~2 = 1) with respect to rr “Pt,, & 

that in this case the tensor components Q”pVand Q”Pvh 
hrrAPAl. It is clear 

will lie on some surfaces within 

the space of the variables {Q”PV,Q”PV”) 

fk(Q Y Q *? xs) = 0, @=I, . . . . m<36) (4.7) 
which may be called the loading surfaces(*). Indeed in the case under consideration, Q”pv 
QAPvh as determined from (4.3) will be homogeneous functions of degree zero, aud conse- 

quently will not depend on all the quAantities rrAPv and vAxrrn 

dent arguments of the form R”~~/R tt ,..., the number of why 
. ~~.“,u.eo;~so;h~~~~~ 

ber of tensor components Q”pv, Q”p vh. Hence, there must exist at least one relationship 

of the form (4.7) among the generalized forces(**). 

The entire preceding theory was developed within the confines of finite deformation 

l ) In the case of classical models in the theory of plasticity for k = 1, the relation bet- 
ween the dissipation function and the loading function was investigated by Ivlev [25]. 

**) If a&‘) is a homogeneous function of first degree, then there exists a relationship 

among the generalized stresses, which are defined by Formulas 

Indeed, assuming that these relations for i = Z,..., n are solved for vj, then we can 
write 

Vj =; @ (X,,...,X,) 

Substituting these functions into the equation with i = 1 

X1 -qtl (vi) = Xl - al(Ip'(.&.-.*X,)) = f(q) = 0 f-4) 

we obtain the desired relation f(Xiu,) = 0 which interrelates the stresses X, . This rela- 
tion may be regarded as an equation of a stress surface in the X, space. If there are 
only s < n - 1 inde 
stated assumption pertaining to s = n - Q 

endent functions among n functions vi (v2 ,..., v”) then the above 
1) concerning the possibility of obtaining a 

solution does not hold. In that case, instead of one equation we have n - s equations 
of the form 

fk (x,) = 0 (k = 1,2,..*, ?a - $1 
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theory; assumptions regarding small deformations can only lead to simplification or lineari- 

zation of the previously obtained relations. 

5. Classical models, 1 *. Ideal fluid model (gas). HereA= 1/2pvz- 

-pU. whereupon the internal energy is a function of density p and entropy S only, and the 
functional 6 W* takes the form 

6w* = 5 1 1peSs $- F&x0! + NW dsdt (5.4) 

Yt 
The stress tensor is obtained from (3.10), and turns out to be spherical 

p,@ =-pp6 a a’ p=p%UjIp 

The Euler Eqa (4.2) become the equations of motion of an ideal fluid. Further, we ob- 

tain 
8 = (XI/ aS)p=const 

For a given A’, (5.1) yields the defining Eq. for S 

~~ds~dt~~ 
In that case, in solving problems we may obtain and investigate the residual stresses 

which are reversible by nature. 

2O. Model of a viscous, heat-conducting fluid (gas). The differences 

from the ideal fluid are only in the composition of the functional SW*. For viscous fluid 

models, we set 

6W* = 5 5 [o@sS f F,62~6L - x,,” Y~@x” - div q&l dz dt 
vt 

The entropy balance equation in this case becomes 

dS 
p8 dt == -6div $-- $-grad8 +~“~“~~vv~~ 

If we assume that there exists a dissipation function 

where LCp, are quantities defined in Section 2, then, taking into account (4.3), we obtain 

the following relations: 

If the dissipation function depends on ~*VvAP only through the components of the de- 

Formation rate tensor, then r”~” is symmetrical. 
The classical Navier-Stokes model of a viscous medium is obtained by assuming that the 

dissipation function (J is a positive definite quadratic form in VA,+@ and vA,,pAP. In this 

case. the relations in (5.2) are linear and conform to Onsager’s principle. 

The assumption of isotropy introduces substantial simplifications in the quadratic form 
for ET, whereupon the coupling between temperature and viscosity effects disappears. 

3O. Elastic body model. In this case, we have 

A = l/rpu” - pU (eA($,, s, A@)), s^,+W?ny”-g*y”) 

hw* I= 
ss 

[peSS + F,6@ + N&t] dz dt 

vt 
To obtain all the relations for a particular case of the system of equations given in Sec- 

tions 3 and 4, we set 

Ppu = g”pv (6% Ab, cc9 = sap ~& 4)) 

Since As defines the transformation from the observer coordinates x0 to the fixed basis 
El 

of the “initisl”state” ,theA% are excluded from the number of unknown variables and be-- 

come parameters of the type L@). 
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The momentum equations are reduced to (3.9) , wherein in accordance with (3.10) the 

stress tensor components pyP = gY apafi may be written in the form 

The formula for @ and the energy equation, equivalent to the entropy balance , may be 

written in the form 

4O. Models of plastic bodies. With some additional assumptions, many known 
models of the theory of ideal plasticity and plasticity with hardening may be obtained from 
the general theory developed in Sections 3 and 4. For this purpose, it is sufficient to take 

A = ‘/2P”2 - PU (g*p”t g^,,& L @)I 

lw* = 
ss 

[pe&s + F,B1xa - Q n i”v&~ n ,,$” + N&j dz dt 

vt 
In contrast with the general case, the components of Aup enter I\ and SW* only through 

the components of the metric tensor in the initial state 

g*fA’v = g,fiAEL, ABV, [e”,\? =_‘/a (B*pv - g”,Jl 

Cleady QApvmay be considered to be symmetric; in applying the general theory, it is 
necessary to take into account the identity 

Q ?j8”fi) =: QA”‘B,,6Aa, 

The arbitrariness of the variations 6e*(,P? = l/z 6g*,,v now leads to only six equa- 
tions instead of the nine equations in (3.4): 

From (3.10) as well as (5.3). we obtain the stress tensor. 

C55.6) 

In the important particular case, when the components g*lzV and gAtLv in (5.4) appear 

only as differences gnpV - g*py = 2e n sy”) , (a medium “with no memory”) we obtain 

P 
*yv-- - Q^“’ (5.7) 

It should be stressed that (5.7) does not hold for a medium “with memory”, when the in- 
ternal energy depends on the components of elastic deformation as well as the components 
of plastic deformation .s”($, In accordance with (4.2) ~7~ is given by 

a2= Q-~v,-fP) 
P” 

(5.8) 

If (5.7) hoids, then (5.8) yields 

02 = P ^PV, -fp) 
B” 

(5.91 

However, for the general case, (5.9) does not hold. For a medium “with memory”, (5.5) 
may be written in the form 

In that case, instead of (5.71, we obtain from (5.6) 

Q&P’= 
au 

P AP” _-p - 
ae A (P) 

P” 

(5.10) 
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For a medium “with memory”, (5.9) is replaced by(*) 

(5.11) 

The preceding discussion on u2 is essential, since (5.9) is widely used in the literature. 

The complete equation of entropy balance (4.1) becomes in the present case 

(5.12) 

The dissipation function CI is given by 

(5.13) 

Formula (5.13) shows that only for isothermic states is the requirement a2 $0 complete- 

ly substantiated. 
From the condition that the entropy increase must be independent of deformation time, 

we obtain the result that u 4 (PI 2, which is a homogeneous first-degree function in e ~ v, may 

also depend on the appropriate hardening parameters xS. 
From the theory developed in Section 4, it follows that for irreversible processes 

Q 
np,v _ 8% 

-gq.T 
w 

(5.14) 

Relations (5.14) together with (5.51 may be regarded as equations defining the plastic 
deformation rate tensor e “‘F)v. 

These relations replace the associated rule. After determining the loading functions from 

(5.141, we may obtain [25] the associated rule which generally contains the components 
Q”Pr’ but not components of the stress tensor pnpv, as it was assumed in [25], 

Note that in the case under consideration relations of the type given in (5.14) may be 
written for p”Pvas well as QApr’: 

However, the function q $ 0 differs from the dissipation function u2, and it follows 

from (5.101, (5.14) and (5.41 that th e relation between the two is given by 

where o is an arbitrary function which is independent of e -+(P) 

For a medium “with memory” in accordance with (5.101, p*pYmay be replaced by p “Fv 

as arguments of the loading functions. For reversible processes, we may take o2 = 0. In 

many typical cases, it follows from era = 0 that e*(F),, = 0. However, we can consider func- 

tions O2 such that residual or plastic deformations may arise for reversible processes. 

Given suitable forms of the internal energy and the dissipation function, we may obtain 
from (3.2), (5.121 and (5.14) concrete models in the theory of plasticity for which the har- 
dening parameters xa are given functions or functionals of the defining parameters. If the 

dissipation function u2 is of the form(+*) 

o3 = k j,,rep~P),~PW 

*l Au explanation of the distinction and relation between the dissipation and the work due 
to the stress tensor for plastic deformations is given in [14] (p. 269). 

**I For such a choice of u 
f ’ 

the plastic deformation rate tensor may be replaced by the de- 
viator of the plastic de ormation rate tensor. The corresponding changes in the resul- 
tant formulas are evident. 
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where k is independent of el*v (*), then it is easily seen that the Q”Pt’, defined by (5.14). 

lie on the surface 
Q^“‘Q^,, = ka (5.15) 

In the ideal plastic model of von Mises [21] 

U=U(a ^$, s, L(,$ k = const 

In the Schmidt-Osgood plastic models with hardening, we have 

U=U(a Pv’ A(+?) s, L@)), k = k TX) 

where x is defined by the relation dx= /w; and k (x) is an empirically deter- 
mined function. Since the internal energy is, rn’these cases, independent of the plastic de- 
formations, (5.7) holds and the equation for the loading surface may be written in the form 

P 
rp” A 

P tL” 
= k” 

For models with translation hardening, we set 

U=fJo(s P”’ A(e) s, L(,)) + ll2ce pLv e A(P) A(P)W, k = const 

Here, instead of (5.7), we obtain 

Q *WV_ _p~P"_,,~(P)P~ 
Thus, the loading surface equation (5.15) takes the form 

(P 
rl*v _ ce A (P)P”) (p Apv - ~8 ̂ $‘) = ka 

6. Example model in the theory of continuous dislocations. The 

variational principle permits the construction of various models of media with continuously 
distributed dislocations. Below, we examine a particular example within the confines of 
small deformation theory(*); in this model, the kinetic energy is related only to the inertial 

properties of the actual state T = %po2, while the internal energy is a quadratic form in 

the components of the elastic strain tensor e$ , in the entropy difference S - So between 
the deformed and initial states, and, by contrast with classical elasticity theory, in nine 
other internal paPameters which are components of the dislocation density tensor So@: 

U = ‘/aA a~%,p# + B%$) (S -27,) -j- C=~y$&w8 + 

+ D,$@ (S - S,) + ‘/&,YsS”BSY8 + f (S) 
(6.1) 

where A@Y 3 ,..., Eaays are given nonvarying parameters (in the general theory, they cor- 

respond to the parameters L(,) 1. An additive constant may be taken as a function of the en- 

tropy f 6). 
Set 

h=T--pU 

6W’ = 
ss 

[p%iS + F,Glxa - Q’LVGe,$) - Qp’“Vx (B,,6Aav) - div qst] dr dt (6.2) 

Vi 

In correspondence with the general theory of Section 5, the components Qpv and q4 are 

defined by (4.3). The dissipation functions are given by the following Expressions: 

or = @Fag &7,B) (v@) (6.3) 

K”Byseeaf)e,(gP) + ~L~BYS~ (P) 
ds,6 

aB dt + W@YS 7 7 (6.4) 

l ) As we know, in the theory of small deformations the components of the strain tensor in 
the observer reference system and those in the moving reference system are identical. 
As a result, we will omit in the following the symbol A, and we will not distinguish be- 
tween operators D and d(...)/dt, c? (...I/dcp and d(...)/axa when they are applied to com- 

ponents of small tensors. Moreover it is assumed that goPv(th) = gPv(th). 
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Here, F@, KQ@Y 8, LapYs and MC@‘3 a re components of physical properties of the 

medium which, in view of the positive definite character of ot and 02, must satisfy the 

known inequalities. Utilizing (4.3). we find that, for small deformations, the following Eqs. 
hold: 

dS,:, / dt = l/s sYu,V& (0.5) 

From (4.3) and (6.3) to (6.5), it follows that 

‘la = - F”‘& 8 (6.6) 

From (6.8). we obtain eighteen relations 

Q,bY + QfiYa = 0 (6.9) 
which are part of (4.7), defining a loading surface in the space IQ “p, Q aP% The remain- 

ing nine components Q KayI may be expressed in terms of the nine components of the ten- 

sor 
a6, 1 

RaB= a(dSaB/dt) a2 

dS,, 
x-- psealN + &p!w dt (6.10) 

In the space (Q”p, Rap 1, th e equation of the loading surface takes the form 

f IQ”“, RaP, pm, L”BYS, MaPus) = (J (6:ll) 

In the case under consideration, we obtain from the general theory, Sections 4 and 5, the 
following system of equations, consisting of the equations of motion (3.9), entropy balance 

Eqs. for the internal parameters (3.4) 

r/2eYPo~y (Rc= + Xca) + p@ = Q@ 

Eqs. of state 

(6.12) 

p+P = A’@%y6e) + BaB (8 - So) + @3&y” (6.13) 

p-?Zys = c=Pys&$’ + D,, (S -So) + E,By#S (6.14) 

as well as (6.6), (6.7) and (6.10). Eqs. (6.12), symmetrized with respect to CL& differ from 

(5.7) of the theory of plasticity by the term l/2 eYBovJY (R’” f Eta). Eqs. (6.12), altema- 

ted with respect to UP take the form 

vB (R’,p + EiB) - a/sV, (Ri + 2;) = 0 (6.15) 

Here, the primed quantities denote the respective deviators. In problems for which homo- 
geneity of the particles exists, i.e. when ofit, Asp = 0 and V”,,S = 0, we obtain SPY = 0 so 

that the solution for the proposed model coincides with the solution obtained for the same 

problem by considering the model to he that of a plastic medium “with no memory” as dis- 

cussed in Section 6. 

V 

Relations (6.12) may be utilized to replace Qap by pap, RQaand xua by VYR*~ and 

xoa in (6.11). Hence it is clear that it is convenient to operate with QaP in place of 
p+ h f w en ormulating the loading conditions. 

(Note that taking into account the kinetic energy and inertial properties of the initial 

state would lead to a complication of (6.15) by terms of the form dK,/dt where K, is a gen- 

eralized impulse associated with the motion of dislocations). 
Thus, we have a general linear theory, taking into account anisotropy. All preceding for- 



Dynamic theory of continuously distributed dislocations 1005 

mulas become substantial1 

only through &‘$ and S 4 

simplified if anisotropic properties manifest themselves [ 221 

a In that case, instead of (6.6). (6.71 and (6.101 we obtain 

qQ =-XV”% (6.16) 

where X, 1, ,..., 1, are scalars which in the general case may be considered as functions 
of the scalar invariants of the defining parameters, while in the linear theory they may be 

taken as constants. The Ioading function (6.111, corresponding to the dissipation function 
(6.41 may be obtained by substituting into the right-hand side of the following Eq. 

d&8 
og = Q@e(,pg) + QafiY~vnaS = QaBobL(PP) + Raa 7 

the quanti ies 
of4 

e 
andu2R. 

‘$)p and dS@/dt, which from (6.16) may be experssed in terms of o zQafl 
and which appear in the form 

f (Q@, R=*, l,, . . ., 1,) = (Qa; - clRaB) (Q’“? - clRa’) - c2R;,8+?““B) - 

- CsR[ap] R[aB' - ca (gapRaB )2 - c5 fg.3Q”B)2 - ~6 (gag@) (g,3Q”‘? - co (6.17) 

where co, ci,... cg are defined in terms of It,..., I7 in an obvious manner. The loading 
function (6.17) is a second order surface in the space (Qafi, R@ 1. If cr = const., this sur- 
face is fixed. If cg = ca = 0, then the plastic deformations are incompressible. The case of 
ll=COuSt.,l~=l~=...=l,=O(Ct=...=C~= 0, c = const.1 corresponds to an ideally 
plastic body, studied in Section 5, in which case R ofi = 0. 

In the general case, Rap is nonzero and describes the hardening phenomenon. In the 

stress space {Q ‘ofi], the loading surface is a sphere whose center ct Rap varies with time 
and whose radius r 

also varies during the process of deformation. 
the coefficients 1, (or c, ). 

Concrete models are obtained by a choice of 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 
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